Sains Malaysiana 54(6)(2025): 1593-1604
http://doi.org/10.17576/jsm-2025-5406-14
Enhanced
Solubility and Dissolution of Ketoconazole through Co-Amorphization with
Fumaric and Tartaric Acid via Co-Milling
(Peningkatan Keterlarutan dan PelarutanKetokonazol melalui Amorfisasi Bersama dengan Fumarik dan Acid Tartarik melalui Pengisaran Bersama)
INDRA INDRA1,*, RANI NURANI1 & WINDA TRISNA WULANDARI2
1Pharmaceutics Group,
Faculty of Pharmacy, Universitas Bakti Tunas Husada, Tasikmalaya,
46115, Indonesia
2Pharmacochemistry Group,
Faculty of Pharmacy, Universitas Bakti Tunas Husada, Tasikmalaya,
46115, Indonesia
Diserahkan: 17 Disember 2024/Diterima: 24 April 2025
Abstract
This study investigates the co-amorphization of
ketoconazole (KTZ) with fumaric acid (FA) and tartaric acid (TA) through
co-milling, aiming to enhance the solubility, stability, and dissolution
properties of this poorly water-soluble antifungal. Phase diagrams obtained via
Hot Stage Microscopy (HSM) showed eutectic-like behavior at equimolar ratios for both KTZ-FA and KTZ-TA systems, with a more pronounced
melting point depression in KTZ-FA, indicative of stronger molecular
interactions fostering stable amorphous formation. Solid-state characterization
using Powder X-ray Diffraction, Fourier Transform Infrared Spectroscopy, and
Differential Scanning Calorimetry confirmed amorphization and showed
significant hydrogen bonding in KTZ-FA. Further analyses with Thermogravimetric
Analysis and Scanning Electron Microscopy demonstrated reduced thermal
stability and particle size, accompanied by homogenous amorphous morphologies.
Solubility and dissolution studies highlighted remarkable improvements:
solubilities of KTZ-FA and KTZ-TA were 11.652 mg/mL and 8.750 mg/mL,
respectively, compared to 0.060 mg/mL for pure KTZ. Dissolution profiles
indicated superior performance of KTZ-FA at neutral pH, attributed to enhanced
hydrogen bonding. Taken together, these findings position the co-amorphous
KTZ–FA and KTZ–TA systems as promising candidates for developing rapid-acting
oral antifungal dosage forms with improved bioavailability and patient
compliance.
Keywords: Co-amorphization; co-milling; ketoconazole
solubility; solid-state characterization
Abstrak
Penyelidikan ini mengkaji
amorfisasi bersama ketokonazol (KTZ) bersama asid fumarik (FA) dan asid
tartarik (TA) melalui proses pengisaran bersama bagi meningkatkan keterlarutan,
kestabilan dan kadar pelarutan ubat antikulat yang kurang larut dalam air ini.
Rajah fasa yang diperoleh melalui Mikroskop Panas (HSM) menunjukkan tingkah
laku seperti eutektoid pada nisbah molar 1:1 dalam kedua-dua sistem KTZ-FA dan
KTZ-TA, dengan penurunan titik lebur yang lebih ketara dalam KTZ-FA,
mencadangkan interaksi molekul yang lebih kuat yang menyokong pembentukan fasa
amorfus yang stabil. Pencirian keadaan pepejal melalui Pembelauan Sinar-X
Serbuk (PXRD), Spektroskopi Inframerah Transformasi Fourier (FTIR) dan
Kalorimetri Pengimbasan Pembezaan (DSC) mengesahkan pembentukan amorfus serta
menonjolkan pembentukan ikatan hidrogen yang signifikan dalam KTZ-FA.
Pengesahan lanjut oleh Analisis Termogravimetrik (TGA) dan Mikroskop Imbasan
Elektron (SEM) menunjukkan penurunan kestabilan terma dan saiz zarah dengan
morfologi amorfus yang homogen. Kajian keterlarutan dan pelarutan menunjukkan
peningkatan yang ketara: KTZ-FA dan KTZ-TA mencapai keterlarutan masing-masing
sebanyak 11.652 mg/mL dan 8.750 mg/mL berbanding 0.060 mg/mL bagi KTZ tulen.
Profil pelarutan menunjukkan prestasi yang lebih unggul bagi KTZ-FA pada pH
neutral, mungkin disebabkan oleh ikatan hidrogen yang lebih kuat. Secara
keseluruhan, penemuan ini meletakkan sistem ko-amorfus KTZ–FA dan KTZ–TA
sebagai calon yang berpotensi untuk pembangunan bentuk dos antikulat oral
bertindak pantas dengan bio keterdapatan yang lebih baik dan pematuhan pesakit
yang meningkat.
Kata kunci: Keterlarutan
ketokonazol; ko-amorfisasi; pencirian keadaan pepejal; pengisaran bersama
RUJUKAN
Adachi, M., Hinatsu, Y., Kusamori,
K., Katsumi, H., Sakane, T., Nakatani, M., Wada, K. & Yamamoto, A. 2015.
Improved dissolution and absorption of ketoconazole in the presence of organic
acids as pH-modifiers. European Journal of Pharmaceutical Sciences 76: 225-230.
https://doi.org/10.1016/j.ejps.2015.05.015
An, J.H., Lim, C., Kiyonga, A.N., Chung,
I.H., Lee, I.K., Mo, K., Park, M., Youn, W., Choi, W.R., Suh, Y.G. & Jung,
K. 2018. Co-amorphous screening for the solubility enhancement of poorly
water-soluble mirabegron. Pharmaceutics10(3): 149. https://doi.org/10.3390/pharmaceutics10030149
Aysha Aslam, Muhammad Amer Ashraf,
Kashif Barkat, Asif Mahmood, Muhammad Ajaz Hussain, Muhammad Farid-ul-Haq,
Manar O Lashkar & Heba A. Gad. 2023. Fabrication of stimuli-responsive quince/mucin
co-poly (methacrylate) hydrogel matrices for the controlled delivery of
acyclovir sodium: Design, characterization and toxicity evaluation. Pharmaceutics 15(2): 650. https://doi.org/10.3390/pharmaceutics15020650
Baghel, S., Cathcart, H. & O’Reilly,
N.J. 2016. Polymeric amorphous solid dispersions. Journal of Pharmaceutical
Sciences 105(9): 2527-2544. https://doi.org/10.1016/j.xphs.2015.10.008
Baldea, I., Moldovan, R., Nagy, A-L., Bolfa,
P., Decea, R., Miclaus, M.O., Lung, I., Gherman,
A.M.R., Sevastre-Berghian, A., Martin, F.A., Kacso, I. & Răzniceanu,
V. 2024. Ketoconazole-fumaric
acid pharmaceutical cocrystal: From formulation design for bioavailability
improvement to biocompatibility testing and antifungal efficacy evaluation. International
Journal of Molecular Sciences 25(24): 13346.
https://doi.org/10.3390/ijms252413346
Budiman,
A., Lailasari, E., Nurani, N.V., Yunita, E.N., Anastasya, G., Aulia, R.N.,
Lestari, I.N., Subra, L. & Aulifa, D.L. 2023. Ternary solid dispersions: A review of the preparation,
characterization, mechanism of drug release, and physical stability. Pharmaceutics 15(8): 2116. https://doi.org/10.3390/pharmaceutics15082116
Chen, Y. & Rodríguez-Hornedo, N. 2018.
Cocrystals mitigate negative effects of high pH on solubility and dissolution
of a basic drug. Crystal Growth & Design 18(3): 1358-1366.
https://doi.org/10.1021/acs.cgd.7b01206
Ding, Y., Xu, S., Ding, C.Z., Zhang, Z.
& Xu, Z. 2024. Randomly methylated β-cyclodextrin inclusion complex
with ketoconazole: Preparation, characterization, and improvement of
pharmacological profiles. Molecules 29(9): 1915.
https://doi.org/10.3390/molecules29091915
Fael, H. & Demirel, A.L. 2020.
Tannic acid as a co-former in co-amorphous systems: Enhancing their physical
stability, solubility and dissolution behavior. International Journal of
Pharmaceutics 581: 119284. https://doi.org/10.1016/j.ijpharm.2020.119284
Feng, Y., Wang, H., Wu, D., Chen, K., Wang,
N., Wang, T., Huang, X., Zhou, L. & Hao, H. 2024. Polymorph transformation of
solid drugs and inhibiting strategies. CrystEngComm 26(46): 6510-6544.
https://doi.org/10.1039/D4CE00811A
Fung, M., Berzins, K. &
Suryanarayanan, R. 2018. Physical stability and dissolution behavior of
ketoconazole-organic acid coamorphous systems. Molecular Pharmaceutics 15(5): 1862-1869. https://doi.org/10.1021/acs.molpharmaceut.8b00035
Guinet, Y., Paccou, L. & Hédoux, A. 2023.
Mechanism for stabilizing an amorphous drug using amino acids within
co-amorphous blends. Pharmaceutics 15(2): 337. https://doi.org/10.3390/pharmaceutics15020337
Hatanaka, Y., Uchiyama, H., Kadota, K.
& Tozuka, Y. 2021. Improved solubility and permeability of both nifedipine
and ketoconazole based on coamorphous formation with simultaneous dissolution
behavior. Journal of Drug Delivery Science and Technology 65: 102715.
https://doi.org/10.1016/J.JDDST.2021.102715
Heikkinen, A., Declerck, L., Löbmann, K.,
Grohganz, H., Rades, T. & Laitinen, R. 2015. Dissolution properties of
co-amorphous drug-amino acid formulations. Die Pharmazie 70(7): 452-457.
Hiendrawan, S., Hartanti, A., Veriansyah,
B., Widjojokusumo, E. & Tjandrawinata, R. 2015. Solubility enhancement of
ketoconazole via salt and cocrystal formation. International Journal of
Pharmacy and Pharmaceutical Sciences 7: 160-164.
Hou, J., Zhao, P., Wang, Y., Jiang, X.
& Fu, Q. 2024. Co-amorphization of acemetacin with basic amino acids as
co-formers for solubility improvement and side effect mitigation. Pharmaceutics 16(6): 745. https://doi.org/10.20944/preprints202405.0123.v1
Indra, I., Wikarsa, S., Nugraha, Y.P.,
Suendo, V., Uekusa, H. & Soewandhi, S.N. 2023. Utilizing hot-stage
polarized microscopy and ATR-FTIR for ramipril co-crystal screening, supported
by principal component analysis and cluster analysis. J. Pharm. Pharmacogn. Res. 11(6): 1137-1148. https://doi.org/10.56499/jppres23.1723_11.6.1137
Ishikawa, M. & Hashimoto, Y. 2011.
Improvement in aqueous solubility in small molecule drug discovery. Journal
of Medicinal Chemistry 54(6): 1539-1554. https://doi.org/10.1021/jm101356p
Jensen, K.T., Löbmann, K., Rades, T.
& Grohganz, H. 2014. Improving co-amorphous drug formulations by the
addition of the highly water-soluble amino acid, proline. Pharmaceutics 6: 416-435. https://doi.org/10.3390/pharmaceutics6030416
Jermain, S.V., Brough, C. & Williams,
R. 2018. Amorphous solid dispersions for poorly water-soluble drugs. International
Journal of Pharmaceutics 535: 379-392.
https://doi.org/10.1016/j.ijpharm.2017.10.051
Kadri, L., Casali, L., Emmerling, F. &
Tajber, L. 2024. Mechanochemical comparison of ball milling processes for
levofloxacin amorphous polymeric systems. International Journal of
Pharmaceutics 665: 124652.
https://doi.org/https://doi.org/10.1016/j.ijpharm.2024.124652
Kanaujia, P., Poovizhi, P., Ng, W. &
Tan, R. 2015. Amorphous formulations for bioavailability enhancement. Powder
Technology 285: 2-15. https://doi.org/10.1016/J.POWTEC.2015.05.012
Kapoor, D.U., Singh, S., Sharma, P.
& Prajapati, B. 2023. Amorphization of low soluble drug with amino acids. AAPS
PharmSciTech. 24: 253. https://doi.org/10.1208/s12249-023-02709-2
Karagianni, A., Malamatari, M. &
Kachrimanis, K. 2018. Pharmaceutical cocrystals: New solid phase modification
approaches for the formulation of APIs. Pharmaceutics 10(1): 18.
https://doi.org/10.3390/pharmaceutics10010018
Keramatnia, F., Jouyban, A., Valizadeh, H.,
Delazar, A. & Shayanfar, A. 2016. Ketoconazole ionic liquids with citric
and tartaric acid: Synthesis, characterization and solubility study. Fluid
Phase Equilibria 425: 108-113. https://doi.org/10.1016/J.FLUID.2016.05.016
Khatri, V. & Dey, P. 2025. Exploring
the dielectric properties of herbal medicine and modern pharmaceuticals: An integrative
review. Frontiers in Pharmacology 15: 1536397. https://doi.org/10.3389/fphar.2024.1536397
Liu, J., Grohganz, H. & Rades, T. 2020.
Influence of polymer addition on the amorphization, dissolution and physical
stability of co-amorphous systems. International Journal of Pharmaceutics 588: 119768. https://doi.org/10.1016/j.ijpharm.2020.119768
Mithu, M.S.H., Ross, S.A., Hurt, A.P.
& Douroumis, D. 2021. Effect of mechanochemical grinding conditions on the
formation of pharmaceutical cocrystals and co-amorphous solid forms of
ketoconazole – Dicarboxylic acid. Journal of Drug Delivery Science and
Technology 63: 102508. https://doi.org/10.1016/J.JDDST.2021.102508
Mohan, S., Li, Y., Chu, K., De La Paz, L.,
Sperger, D., Shi, B., Foti, C., Rucker, V. & Lai, C. 2024. Integrative salt
selection and formulation optimization: Perspectives of disproportionation and
microenvironmental pH modulation. Molecular Pharmaceutics 21(5): 2590-2605.
https://doi.org/10.1021/acs.molpharmaceut.4c00166
Paisana, M.C., Lino, P.R., Nunes, P.D., Pinto,
J.F., Henriques, J. & Paiva, A.M. 2021. Laser diffraction as a tool for
amorphous solid dispersion screening. European Journal of Pharmaceutical
Sciences 163: 105853. https://doi.org/10.1016/j.ejps.2021.105853
Park, J., Cho, W., Cha, K., Ahn, J., Han,
K. & Hwang, S. 2013. Solubilization of the poorly water soluble drug,
telmisartan, using supercritical anti-solvent process. International Journal
of Pharmaceutics 441(1-2): 50-55.
https://doi.org/10.1016/j.ijpharm.2012.12.020
Peltonen, L. & Strachan, C.J. 2020.
Degrees of order: A comparison of nanocrystal and amorphous solids for poorly
soluble drugs. International Journal of Pharmaceutics 586: 119492.
https://doi.org/https://doi.org/10.1016/j.ijpharm.2020.119492
Reppas, C., Kuentz, M., Bauer-Brandl,
A., Carlert, S., Dallmann, A., Dietrich, S., Dressman, J., Ejskjaer, L., Frechen, S., Guidetti, M.,
Holm, R., Holzem, F.L., Karlsson, Ε., Kostewicz, E., Panbachi, S., Paulus,
F., Senniksen, M.B., Stillhart, C., Turner, D.B., Vertzoni, M., Vrenken, P.,
Zöller, L., Griffin, B.T. & O'Dwyer, P.J. 2023. Leveraging the use of in vitro and computational
methods to support the development of enabling oral drug products: An inpharma
commentary. European Journal of Pharmaceutical Sciences 188: 106505.
https://doi.org/https://doi.org/10.1016/j.ejps.2023.106505
Saberi, A., Kouhjani, M., Yari, D., Jahani,
A. & Salimi, A. 2023. Development, recent advances, and updates in binary,
ternary co-amorphous systems, and ternary solid dispersions. Journal of Drug
Delivery Science and Technology 86: 104746.
https://doi.org/10.1016/j.jddst.2023.104746
Sakaguchi, Y., Takata, S., Kawakita, Y.,
Fujimura, Y. & Kondo, K. 2023. Direct observation of concentration
fluctuations in Au–Si eutectic liquid by small-angle neutron scattering. Journal
of Physics Condensed Matter 35(41): 415403. https://doi.org/10.1088/1361-648x/ace577
Shayanfar, A. & Jouyban, A. 2014.
Physicochemical characterization of a new cocrystal of ketoconazole. Powder
Technology 262: 242-248. https://doi.org/10.1016/J.POWTEC.2014.04.072
Singh, M., Murugan, N.A., Kongsted, J., Zhan,
P., Banerjee, U.C. & Poongavanam, V. 2024. Molecular insights from spectral
and computational studies on crystalline and amorphous telmisartan. Crystal
Growth & Design 24(15): 6354-6363.
https://doi.org/10.1021/acs.cgd.4c00608
Trzeciak, K., Wielgus, E., Kaźmierski,
S., Pawlak, T. & Potrzebowski, M.J. 2023. Amorphization of ethenzamide and
ethenzamide cocrystals - A case study of single and binary systems forming
low-melting eutectic phases loaded on/in silica gel. Pharmaceutics 15(4): 1234. https://doi.org/10.3390/pharmaceutics15041234
Tsume, Y., Mudie, D.M., Langguth, P.
& Amidon, G. 2014. Biopharmaceutics classification system subclasses. European
Journal of Pharmaceutical Sciences 57: 152-163.
https://doi.org/10.1016/j.ejps.2014.01.009
van den Bruinhorst, A., Corsini, C.,
Depraetère, G., Cam, N., Pádua, A. & Costa Gomes, M. 2024. Deep eutectic
solvents on a tightrope: Balancing the entropy and enthalpy of mixing. Faraday
Discussions 253: 273-288. https://doi.org/10.1039/d4fd00048j
Vijayakumar, V.N., Chakravarty, S., Sundaram,
S., Chitravel, T., Balasubramanian, V., Sukanya, R. & Tharani, A. 2024.
Hydrogen bond thermotropic ferroelectric liquid crystal of DL-tartaric acid and
4-heptyloxybenzoic acid (1:1): Experimental and density functional theory (DFT)
approach. Journal of Molecular Structure 1316: 138819.
https://doi.org/https://doi.org/10.1016/j.molstruc.2024.138819
Wilke, S.K., Al-Rubkhi, A., Benmore, C.J.,
Byrn, S.R. & Wéber, R. 2024. Modeling the structure of ketoprofen-poly(vinylpyrrolidone)
amorphous solid dispersions with empirical potential structure refinements of
x-ray scattering data. Molecular Pharmaceutics 21(8): 3967-3978.
https://doi.org/10.1021/acs.molpharmaceut.4c00313
Wu, H., Ma, J., Qian, S., Jiang, W., Liu,
Y., Li, J., Ke, Z. & Feng, K. 2023. Co-amorphization of posaconazole using
citric acid as an acidifier and a co-former for solubility improvement. Journal
of Drug Delivery Science and Technology 80: 104136. https://www.sciencedirect.com/science/article/pii/S1773224722010474.
Yang, Y., Ke, Y., Xie, W., Li, Z., Tao, L.,
Shen, W., Chen, Y., Cheng, H., Chen, J., Yan, G., Li, W., Li, M. &
Li, J. 2024. Amphiphilic disodium
glycyrrhizin as a co-former for ketoconazole co-amorphous systems: Biopharmaceutical
properties and underlying molecular mechanisms. International Journal of
Pharmaceutics 665: 124673.
https://doi.org/https://doi.org/10.1016/j.ijpharm.2024.124673
Yu, H., Zhang, L., Liu, M., Yang, D.
& He, G. 2023. Enhancing solubility and dissolution rate of antifungal drug
ketoconazole through crystal engineering. Pharmaceuticals 16(10): 1349.
https://doi.org/10.3390/ph16101349
*Pengarang untuk surat-menyurat; email: indra@universitas-bth.ac.id